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Purpose of review

Antigens recognized by T cells in tumors include differentiation antigens, overexpressed antigens, cancer-
testis, and mutated tumor neoantigens. Ionizing radiation causes damage to multiple biomolecules by direct
energy deposition or by generation of free radicals, leading to cell death when the damage cannot be
repaired. Tumor cell death induced by radiation will generate specific molecular signals that are sensed by
antigen-presenting cells and stimulate their maturation and ability to cross-present tumor-derived antigens to
T cells. Immunogenic cell death will complement the activity of immune checkpoint inhibitors. We will
provide the emerging information coming from preclinical and clinical testing about the combinations of
immunotherapies and radiotherapy.

Recent findings

Radiation induces chemokines that attract effector T cells to the tumor and vascular adhesion molecules that
facilitate T-cell infiltration. This process, which has been named ‘immunogenic modulation’, plays a role not
only in regression of the irradiated tumor but also in amplifying and strengthening adaptive antitumor
immunity. The ongoing process of killing of tumor cells by cytotoxic T lymphocytes sustains release of more
tumor antigens and possibly promotes antigenic spread, that is, activation of a broader T-cell repertoire.
Results of several ongoing clinical trials are testing the combination of radiotherapy with immune
checkpoint inhibitor treatment. Data support a model whereby ‘waves’ of tumor cell killing by T cells
primed by the initial radiation-elicited antigen release boost the immune response. This process can
eventually achieve systemic tumor control.

Summary

Radiation therapy is confirmed to be a sensitizer of tumors to immune checkpoint inhibitors in clinical trials,
and its application will be easy to implement and widespread. Conversely, many issues need to be
addressed before radiotherapy can become such a valid immunogenic tool. An area of increasing
importance will be the development of suitable biomarkers that will be able to reliably assess ‘immunogenic
tumor cell death’, immune effector stimulation, and adaptive immunity. Such an immune profile of
biomarkers will aid in searching for an optimal combination of radiotherapy and immunomodulation and
allows patient selection and response prediction.
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Tumor cell transformation prompts activation of
adaptive and innate immune responses, which
had a crucial role in eliminating and controlling
early cancer growth. Over the past 10 years, there
has been a greater understanding of the immune
response to tumors, which has led to the develop-
ment of a huge number of immunotherapeutic
strategies [1,2]. Agents such as the immune check-
point inhibitors have demonstrated to induce a
response in a number of solid malignancies [3],
but their therapeutic benefit has not been seen in
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Breast cancer
tumors are in progress. As part of this strategy,
radiotherapy could represent a potentially ideal
partner for immune checkpoint inhibitors. This
review aims to provide the emerging information
coming from preclinical and clinical testing about
the combinations of immunotherapies and radio-
therapy.
EFFECT OF RADIOTHERAPY ON CANCER
IMMUNE RESPONSE

Radiotherapy, in addition to a direct cytocidal effect
on cancer cells, has also immune modulatory prop-
erties; in fact, it causes immunogenic cell death
(ICD) of cancer cells, modulates antigen presen-
tation by cancer cells, and most importantly alters
the microenvironment within the irradiated field
[4,5

&

] (Fig. 1). The ICD of cancer cells involves a
multistep process, including the release of ‘find-me’
signals (such as fractalkine, nucleotides, and ATP)
that attract phagocytes or dendritic cells, the expres-
sion of ‘eat-me’ signals (such as calreticulin) that
facilitate recognition by phagocytes or dendritic
cells, and, finally, the release of danger-associated
molecular patterns [such as high-mobility group
box 1 protein (HMGB1) and ATP] that enable dying
tumor cells to lose the propensity to induce toler-
ance and to stimulate powerful anticancer immune
responses [6–8]. Since the resident dendritic cells
within tumors maintain tolerance, ICD alone may
not be sufficient to elicit a strong antitumor-
immune response [9]. Some preclinical studies
showed that radiotherapy overcame the suppressive
action of tumor resident dendritic cells by engaging
new myeloid-derived dendritic cells that have not
 Copyright © 2015 Wolters Kluwer 
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undergone the regulatory effects of the tumor
microenvironment [10,11]. In summary, radio-
therapy mediates naı̈ve dendritic cell recruitment,
and may, at least in part, alter the immune-tolerant
microenvironment characteristic of tumors. In
addition, radiotherapy catalyzes the engagement
of effector T cells to tumors through the induction
of chemokines such as CXCL16 that correlates with
improved survival and increased numbers of tumor-
infiltrating lymphocytes in some tumors [12–15].
Radiation also has effects on the tumor vascular
endothelium, inducing cell adhesion molecules,
which further promote recruitment of antitumor
cytotoxic T lymphocytes [16].
THE RATIONALE OF THE COMBINATION
OF IMMUNOTHERAPY WITH
RADIOTHERAPY

Greater understanding of radiation therapy’s effect
on tumor cells and components of the tumor micro-
environment has in turn evidenced the central role
of the immune system, as highlighted by Lee et al.
[17], who described that in a mouse model, radio-
therapy needs the presence of CD8þ T cells for
postradiotherapy tumor control. The interaction
of host immune system and proper antitumor
activity can lead to immune-mediated rejection of
nonirradiated metastatic lesions after irradiation of
the primary lesion in a process known as the absco-
pal effect. The abscopal effect of radiation therapy
is an event by which a primary tumor is irradiated
and a response is observed at distant metastatic
sites externally of the field of the radiation [18].
Preclinical evidence supported the hypothesis that
Health, Inc. All rights reserved.
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the abscopal effect is mediated by the immune
system [19], but the effect of radiation appears to
be relatively weak and is rarely seen in clinical
practice. Recently, there have been an increasing
number of case reports showing the appearance of
abscopal effects when radiotherapy is concomi-
tantly administered with immune checkpoint
inhibitors [20,21

&&

,22], underlining that the radio-
therapy treatment can lead to an immune response
which is augmented by the immune-modulating
agents [23

&

]. Therefore, the combination of radio-
therapy and immune modulation represents a
possible new paradigm shift in the management
of advanced malignancy. The interaction between
the immune system and radiation is intricate and
multifactorial; it may rely on the radiation dose/
quality and immune cell types [24]. The critical role
of radiation is to induce the release of tumor immu-
nogenic antigens responsible for the augmented
pool of intracellular peptides for cross-presentation;
in this way, the radiation creates an ‘in-situ vacci-
nation’ [25]. During combinatorial treatment
between radiotherapy and immunotherapy, the
tumor-specific immune response is elicited and
intensified subsequently. Preclinical models showed
that radiation can augment tumor-specific antigen–
Major Histocompatibility Complex complexes, up-
regulate antigen cross-presentation in the draining
lymph node, and increase T-cell infiltration into
tumors [26

&&

].
COMBINATION OF RADIOTHERAPY WITH
CHECKPOINT RECEPTOR BLOCKADE

Despite the huge numbers of proimmunogenic
effects of radiation, often they are insufficient to
shift the immunosuppressive tumor microenviron-
ment to obtain tumor rejection, and systemic anti-
tumor responses following local radiotherapy are
extremely rare. Likewise, only a small fraction of
cancer patients have objective response from avail-
able immunotherapies. A plan to increase both the
likelihood and duration of systemic antitumor
immunity in response to immunotherapy is to
add radiotherapy to sustain the immune response.
An effective approach could be to improve effector
T-cell function by blocking the immune checkpoint
[27]. The aim of this dual approach is to improve the
effector phase of immune response by activating
T cells. The cytotoxic CD8þ T cells have a pre-
dominant role in inhibiting tumor growth. CD8þ
T cells are remarkably augmented in combinatorial
therapy than radiotherapy or immunotherapy alone
[8,24,25,26

&&

]. Deng et al. [21
&&

] demonstrated that
the decrease of CD8þ T cells significantly restrain
the effectiveness of the combinatorial treatment.
 Copyright © 2015 Wolters Kluwe
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These data prompt that CD8þ T cells are necessary
for combinatorial therapy [21

&&

]. Apart from this,
another study demonstrated that natural killer
cells can also contribute to local tumor control fol-
lowing combinatorial treatment [28

&&

]. These results
strengthened the hypothesis that the antitumor
effect of radiotherapy combined with immune-
modulating antibodies is mostly mediated by the
activated immune response. Therefore, agents which
stimulate T-cell function, by blocking immune
checkpoints, have an emerging clinical interest.
Checkpoint receptors, including Cytotoxic T
Lymphocyte Antigen-4 (CTLA-4) and programmed
cell death protein-1 (PD-1), are up-regulated on
activated T cells and transmit inhibitory signals,
which suppress T-cell proliferation and function
[29]. CTLA-4 is a member of the CD28:B7 immuno-
globulin superfamily, and it is normally expressed at
low levels on the surface of naive effector T cells and
regulatory T cells (Tregs) [30]. After stimulation of a
naive T cell, CTLA-4 is up-regulated and competes
with CD28 for B7 and, finally, leads to suppression of
T-cell activity. Anti-CTLA-4 monoclonal antibody
facilitates T-cell proliferation and activation, and
abrogates the suppressive function of Tregs [31]. In
addition to CTLA-4, PD-1 is a key immune check-
point protein expressed on chronically stimulated T
cells, which leads to the suppression of T-cell activity
through interaction with its ligands, PD-L1 and
PD-L2 [32

&

]. Antibodies targeting PD-L1 or PD-1 have
been shown to promote cytotoxic T-lymphocyte
expansion [33] and tumor regression in many mouse
tumor models [34–37]. In mouse models, localized
radiation therapy when combined with systemic
CTLA-4 or PD-L1 blockade resulted in the inhibition
of systemic metastases [21

&&

,38]. Many case reports,
subsequently, confirmed these preclinical findings
showing that in patients treated with anti-CTLA-4
therapy, localized radiation therapy can induce
regression not only of irradiated but also of distant
lesion [39–42]. A retrospective analysis revealed that
52% of 21 patients with progressing metastatic mel-
anoma, after ipilimumab treatment and subsequent
radiotherapy treatment, had an abscopal response,
and the median overall survival (OS) for these
patients was significantly longer when compared
with patients without abscopal response [43

&

].
Clinical trials using a combinatorial approach with
radiotherapy and immune checkpoint inhibitors
have been recently published. An open-label phase
I/II trial, conducted in 33 men with metastatic
castration-resistant prostate cancer, checked esca-
lated doses of ipilimumab from 3 up to 10 mg/kg
with or without a single 8-Gy dose of radiotherapy
directed at one to three osseous metastases. The high-
est dose of ipilimumab was well tolerated, and an
r Health, Inc. All rights reserved.
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Breast cancer
additional 34 patients were treated with concurrent
radiation, with only 25% of patients demonstrating
progressive disease [44]. Kwon et al. [45

&&

] conducted
a double-blind, randomized, multicenter trial in 799
patients with castration-resistant prostate cancer,
who progressed on docetaxel. Patients received a
single fraction of 8 Gy to one to five sites of osseous
metastases and were randomized to following treat-
ment with either 10 mg/kg of ipilimumab or placebo
within 2 days of radiotherapy and continued every
3 weeks for up to four doses. The combination was
well tolerated, but there was no difference in OS in
the population as a whole. However, in subset
analysis, there was an improvement in OS of patients
with a smaller burden of metastatic disease. Recently,
Victor et al. [46

&&

] treated, in a phase I trial, 22 patients
were affected by advanced melanoma with hypo-
fractionated stereotactic body radiation and ipilimu-
mab. Assessment of nonirradiated lesions using
Response Evaluation Criteria In Solid Tumors criteria
demonstrated 18% patients had a partial response as
the best response, 18% had stable disease, and 64%
had progressive disease [46

&&

]. Although responses
were observed, the majority of patients in this trial
did not respond. To explain the contribution of
radiation to immune checkpoint blockade and to
discover mechanisms of resistance, the authors used
the B16-F10 melanoma mouse model that revealed
that resistance was due to up-regulation of PD-L1 on
melanoma cells and was associated with T-cell
exhaustion. As a consequence, optimal response in
melanoma and other cancer types requires a multiple
approach with radiation, anti-CTLA4, and anti-
PD-L1/PD-1, which could be able to promote
response and immunity through distinct mechan-
isms. Inter and intrapatient factors, both in terms of
immune programming and tumor heterogeneity,
may be responsible for differential responses. Of
particular interest is the combination of anti-PD-1
antibodies with radiotherapy. Supporting data
of the efficacy of this combination have been
demonstrated in a mouse glioma model, where the
combination of a constructed anti-PD-1 therapy and
stereotactic radiotherapy led to long-term survival
[20], as well as in a murine model of breast and
colorectal carcinomas, where augmented tumor con-
trol was showed [21

&&

]. Actually, many early-phase
clinical trials combining immune checkpoint inhibi-
tors with radiotherapy are ongoing. A number of
these studies are examining the combination of ster-
eotactic radiotherapy with PD-1 or PD-L1 inhibitors
in patients with oligometastatic disease [47,48]. The
optimal timing of administration, the duration, the
sequence of the immune-modulating agents with
radiotherapy, and the appropriate patient popu-
lations are still not elucidated.
 Copyright © 2015 Wolters Kluwer 
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RADIOTHERAPY AND IMMUNOTHERAPY:
WHERE, HOW, WHEN?
Many factors appear to be important to the success
of combining immunotherapy and radiotherapy.
One variable is represented by the target site of
radiotherapy because intratumor heterogeneity
within primary tumors and associated metastatic
sites could have a relevant impact on the immune
response and radiotherapy may lead to a distinct
immune response at these different sites. Different
mechanisms, such as weakened humoral immune
response, T-cell depletion, and clonal exhaustion,
should be accountable for the immune tolerance
and impaired immune-modulatory activities of
radiotherapy. Dose and fractionation are relevant
variables in the immunogenicity of radiotherapy.
Lymphocytes are extremely responsive to radio-
therapy [49]: very high irradiation could destroy
antitumor immune activity of the host, whereas
very low irradiation could be inadequate to prime
an effective antitumor immune response. In pre-
clinical models, low-dose irradiation has been
demonstrated to augment T-cell migration into
the irradiated field [50]. It has also been prompted
that radiotherapy doses from as low as 2 Gy, but up
to 20 Gy, may be sufficient to start ICD [23

&

]. Also,
the fractionation can have a predominant role to
trigger the antitumor immunity. Dewan et al. [51]
reported that when combined with CTLA-4 anti-
body antagonists, 8 Gy in three fractions or 6 Gy in
five fractions are superior to standard fractionation
or a single dose of 20 Gy. The explanation of the
difference in immune response among disparate
fractionation schedules and dose is uncertain, but
recent clinical reports, which reported impressive
abscopal effects after palliative radiotherapy to a
single metastatic site, support the choice of hypo-
fractionated radiotherapy [40,41]. The identifi-
cation of the most beneficial time point for
radiotherapy combined with immunotherapy is
another important challenge. In a recent preclinical
study combining CTLA-4 blockade with radiother-
apy, using a mouse model of breast cancer, the
antibody was given at different time points, with
the best abscopal response observed when the first
dose of antibody was administered during radio-
therapy [51]. This result was also observed in a case
report in which a patient with nonsmall cell lung
cancer obtained an abscopal effect receiving con-
comitant ipilimumab and radiation [40]. On the
contrary, Postow et al. [41] reported an abscopal
effect in a patient with metastatic melanoma
occurred after long-term treatment with ipilimu-
mab prior to radiotherapy. So, the question about
the optimal timing of radiotherapy has not yet
been addressed.
Health, Inc. All rights reserved.
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CONCLUSION
The recent success of cancer immunotherapy,
particularly checkpoint inhibitors, has turned on
an exciting light on new field of applications and
combinatorial treatments (Table 1). The synergy of
radiotherapy and immunotherapy represents a
rising strategy with the potential to better target
local irradiated/viable tumor cells, and to give
higher control of distant systemic disease. Preclin-
ical and clinical studies have shown the safety and
efficacy of radiotherapy combined with immuno-
therapy. Future trials may investigate combined
approaches to immunotherapy that will improve
the effect of radiotherapy on antitumor T-cell
priming, as well as concur to other steps of immune
rejection [52]. It will be crucial to elucidate the
appropriate dose and fraction of radiotherapy, the
time point of the combination, and most appropri-
ate patient population to improve patient care in
the future.
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